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Abstract

Interferometric Laser Imaging for Droplet Sizing (ILIDS a.k.a. MSI or IPI) re-
quires the objective lens to be defocused so that fringe patterns can be imaged.
When two cameras are used (e.g. to perform simultaneous PIV and ILIDS
measurements or to assist in the detection of overlapping droplet images) this
defocusing introduces a distortion that thwarts an accurate calibration of the
two cameras and makes a successful registration of the two images impossible.
We show that to overcome the obvious difficulties presented by empirical ad-hoc
estimates of this “center discrepancy” distortion, existing feature-based regis-
tration and/or point set registration algorithms can be used on the images to
find the correct homography directly. This approach eliminates the need for
camera calibration and leads to greatly improved matching between images.

Keywords: ILIDS, droplet sizing, spray characterization, camera calibration,
center discrepancies, image registration

1. Introduction

Interferometric Laser Imaging for Droplet Sizing (ILIDS), also known as
IPI (Interferometric Particle Imaging) and MSI (Mie Scattering Imaging) is a
popular optical droplet sizing method in which a spray is illuminated by a sheet
of laser light and the scattered light is imaged laterally. The laser light is both
reflected and refracted by the droplets, such that each droplet produces a pair of
apparent “glare points”. When seen through a lens away from the focal plane,
each pair of glare points (the points being sources of coherent monochromatic
light) appears as an interference pattern which, after falling through a circular
aperture, casts an image that is a circular disk of fringes. The spatial frequency
of the fringes is (to a very close approximation) linearly related to the droplet
size. The phenomenon was first described by König et al. [15] and later in greater
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detail by Glover et al. [8]. Turnkey ILIDS setups for spray characteriziation are
now widely available, comprising typically a pulsed Nd:YAG-laser, one or two
CCD cameras, a timing circuit, and a piece of image processing software.

The ability to image a whole 2D field of droplets all at once is ILIDS’
strongest selling point, yet also its curse. When droplets are spaced too closely,
their defocused disk images overlap and it becomes difficult to determine the
fringe counts corresponding to individual droplets. Damaschke et al. [5] provide
a statistical estimate on the fraction of overlapping disks (overlap coefficient).

Arguably the most popular way to reduce the amount of overlap is the use
of optical compression techniques, whether by means of a slit aperture [24] or a
cylindrical lens [14, 19]. However, some techniques (e.g. Global Phase-Doppler
[6] and intensity-analyzing methods [25]) or use cases (e.g. very low signal-to-
noise ratios) require the full disk image to be available. In these cases, the
standard approach is to identify the location and outline of each disk image,
such that the fringe analysis can either be limited to non-overlapping regions or
be otherwise modified to take overlapping fringes into account.

1.1. Camera calibration and center discrepancies

Although a single camera is in theory sufficient to capture an ILIDS image,
two cameras are often used in practice. One important reason is that a focused
image, taken at the same instant as the defocused image, can provide a basis
for the identification of overlapping disks mentioned above. This is the case,
for instance, for the ILIDS system sold by Dantec Inc. Another reason for
using two cameras can be the experimental requirement to perform two types
of measurements simultaneously; examples of this are provided by Hardalupas
et al. [9] (ILIDS and LIF) and Hardalupas et al. [10] (ILIDS and PIV).

To allow both cameras to image the same physical region in the spray, they
are either placed behind a beam splitter at a right angle to the light sheet, or
placed separately at different angles. The latter approach makes for a more
difficult setup, since Scheimpflug’s rule demands that the camera must be tilted
with respect to the objective lens, but it gives the user the freedom to choose
the highest-intensity scattering angle.

In any of the above cases, the use of two cameras requires that their images
be mapped onto one another. This is commonly achieved by means of a camera
calibration procedure, in which a target pattern (e.g. as in Fig. 1) of known
dimensions is photographed by each camera. A pattern recognition algorithm
then determines the object-to-image mappings for each camera:
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In practice, Px,y,z = 0 and S0 = 1 is assumed, such that the mapping is affine.
The z-components (third row/column) are further assumed to be zero, such that
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Figure 1: Homography H applied to target pattern image captured by the focused camera
and superimposed on the image captured by the defocused camera (here, both cameras were
in focus for the calibration only).

a 3 × 3 matrix suffices for the purposes of this discussion: x′
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The camera calibration algorithm thus finds the camera matrices Pfoc and
Pdef mapping the object coordinates x onto the two camera images x′foc and
x′def (the respective subscripts shall hence designate the focused and defocused
cameras):

x′foc = Pfoc x (3)

x′def = Pdef x. (4)

It follows that the quotient of the two matrices, also known as the homog-
raphy

H = Pdef P
−1
foc (5)

can be used to map the focused image onto the defocused image, as shown in
Fig. 1:

H x′foc = x′def. (6)

Unfortunately, the camera calibration procedure itself introduces an un-
wanted distortion: to capture a viable photo of the target pattern, the defocused
camera must be temporarily brought into focus, as was done in Fig. 1. How-
ever, as the camera is out of focus during the measurement process, both a blur
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Figure 2: Schematic showing the source of center discrepancies in the case of parallel image
and object planes

and a scaling transformation are introduced. Fig. 2, adapted from Hardalupas
et al. [10], shows schematically how this effect creates “center discrepancies”.
Since the extents of the defocused image are either smaller or larger than those
of the focused image, depending on the direction of defocusing, all droplet im-
ages are projected either closer to or farther away from the image center. The
discrepancy is worst for droplets far away from the image center. As a result,
the centers of objects in simulatenously captured focused and defocused im-
ages no longer align (Fig. 3), and the camera calibration procedure becomes
self-defeating.

While this error is easy to account for in the ideal case of right angles and
perfect alignments (simply rescaling the image would solve the problem) the
situation becomes more difficult in practice when the target pattern is no longer
parallel to the camera sensor (intentionally or accidentally) or when cylindrical
lenses are used to add optical compression. In fact, there is no guarantee that
affine mappings are sufficient in the general case.

1.2. Context and structure of this paper

Surprisingly, only Hardalupas et al. [9] and Hardalupas et al. [10] have hith-
erto published a discussion of this effect, and the only previous mention known
to the authors is in Kurosawa et al. [16], who dismissed it as a “positioning
error”.

Hardalupas et al. identified the centers of particles in both PIV (focused)
and ILIDS (defocused) images. They then empirically estimated the magnitude
of the center discrepancy effect along the vertical axis, which enabled them to
improve the accuracy of their nearest-neighbour-based droplet image matching
algorithm.

In this article, we show that existing algorithms developed by the computer
vision community in recent years can obviate the need for camera calibration
entirely. Instead, we can use visual correspondences between the focused and
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Figure 3: Focused camera image, after applying homography H derived from the calibration
images, is superimposed onto defocused camera image of droplets. Discrepancies between
object centers grow towards the edge of the image.

defocused images to find the mapping between them directly. To that end, we
first provide in Section 2 a brief overview over popular methods in the field of
automated (linear) registration, i.e. the art of finding a homography (geometric
mapping) between two epipolar images (images of the same object, taken from
different positions and angles). Section 3 documents our approach in greater
detail and shows the result of a successful recalibration. While our goal was
to automatically identify the disk centers in an uncompressed ILIDS image, a
somewhat different approach is needed to automate the correction procedure
proposed by Hardalupas et al.; we identify some relevant algorithms in Section
4.

2. Review of image registration techniques

Given two identical images that have been rotated, shifted or even scaled
with respect to one another, the applied transformation can theoretically be
found by means of a brute-force search. This method is not feasible in practice,
not only because of its enormous computational complexity (there are no gra-
dients to guide the search) but also because of its inability to deal with noise,
focal blur, perspective changes and other nonlinearities introduced by the pho-
tographic process. Conversely, normalized cross-correlation measures between
images, as commonly used in PIV, are robust to noise but not invariant to rota-
tion and scale and therefore not generally practical. The standard approach to
image registration is therefore a three-step process. First, keypoints, i.e. “inter-
esting” points in the images are found by a keypoint detection algorithm. Then,
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a small image patch at every keypoint is extracted and converted into a feature
vector, a set of numbers providing a very general description of the image patch
that accounts for scale, rotation, blur, contrast, etc. Finally, matches between
similar feature vectors from the two images are found, outliers are removed, and
the homography is calculated.

However, the results of a keypoint detection algorithm must be as repeatable
as possible, i.e. the same set keypoints should be found in both images regardless
of their relative position, rotation, scale, etc. For instance, the Harris corner
detector [11], one of the earliest keypoint detectors, is sensitive to scale and thus
often unusable.

The recent decade has seen a rapidly growing collection of proposed keypoint
detectors, beginning with sift [18], surf [2] and brisk [17], all of which include
keypoint extractors, to censure [1], optimized for speed, and fast [26], which
incorporates machine learning methods. Finally, the recent publication of orb
[27] includes a rotation-aware version of fast used in this paper. Many more
have been developed but are not included here for brevity’s sake.

Keypoint extractors (sometimes called descriptors) are often optimized for
and therefore included with keypoint detectors, as in the instances mentioned
above. Some however are standalone algorithms, such as brief [3].

It is straightforward to find matching keypoints by searching for pairs with
the smallest arithmetic distance between their feature vectors (e.g. using the L2

norm). This nearest-neighbour search can be done exhaustively in linear time
to find the optimal matching, but many faster, if approximate, search methods
exist. We should note flann [22], a publicly available collection of such search
algorithms.

Finally, the homography, assuming one exists, can be derived from the set
of matched keypoint coordinate pairs. Since some of the found matches will
be wrong (i.e. not actual correspondences between the images), it is of essence
to use a robust estimator, i.e. a type of regression model designed to ignore
outliers. Possibly the oldest of these methods is ransac [7], an iterative pro-
cedure in which sets of data points are chosen at random and discarded if the
agreement between a model fit to them and all other data points falls below a
carefully chosen threshold. ransac was used for this paper, although other ro-
bust methods exist. The criterion developed by Moisan and Stival [20] deserves
special mention in our context; it does away with ransac’s hard threshold and
instead takes into consideration the probability of a match to be in consensus
with epipolar geometry.

3. Using affine oriented FAST, BRIEF and RANSAC to estimate the
homography between PIV and ILIDS photographs

Existing PIV/ILIDS systems derive the homography from the result of a
camera calibration procedure which the user is required to perform before ana-
lyzing images. For this experiment, we used a copy of Dantec’s DynamicStudio
software [12], which hides the final value of H from the user. However, the
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camera matrices Pfoc and Pdef can be shown and edited. We therefore must
find a corrected homography Ĥ that allows us to compute

P̂def = Ĥ Pfoc (7)

so that we can replace Pdef with P̂def in the software, effectively correcting H
to Ĥ.

To efficiently extract keypoints, we combined three algorithms: asift [21]
to deal with skew transformations; an oriented version of fast, published as
part of orb, to detect keypoints; and standard brief as a keypoint extractor.

asift is a method originally developed to be used with sift. It introduces
invariance to affine mappings by simulating various projective transformations
while fast and brief are run repeatedly. This slows the analysis down, but
given the infinitude of possible angled camera-camera-object configurations, it
is wise to maintain a flexible framework.

We should note that the original asift with sift works well, but sift is
encumbered by patents. To encourage vendors of imaging systems to adopt the
proposed algorithms, we made it our goal to find a freely available replacement.

Recall that the disks in the defocused image are missing from the focused
image, rendering a registration between them impossible. It is straightforward to
simulate the disks, however. We followed the following protocol on our focused
images:

1. Mask the image, blacking out all areas that are known not to contain
droplets.

2. Subtract the pixel-wise minimum or mean value taken over all images
taken by the camera. This step serves to black out defective hot pixels on
the camera’s CCD and other static noise.

3. Erode the image, using a 3×3 or 5×5 kernel. This will close any remaining
bright pixels which are likely noise.

4. Locate the intensity peaks in the remaining image.

5. Fill a new image buffer with black, then draw bright circles of diameter
Ddisk onto it, centered at the respective positions of the intensity peaks
detected in the focused image. (Note that simply dilating the result of the
previous step will not lead to circular disks.)

The result of performing these operations on our sample image is shown in
Fig. 4. We determined the disk diameter Ddisk empirically from the defocused
images, although it is naturally preferable to automate this step, e.g. using
circular Hough transforms or cross-correlation with circular masks. There may
be simpler ways of achieving the same result, e.g. by means of Gaussian fil-
ters, distance transforms and thresholding operations. However, we found the
protocol described above to be quite robust to noise and fast enough for our
application. Note that the homography estimation needs to be performed only
once (until the camera is moved or refocused).

Implementations of orb and brief are freely available through the OpenCV
project, which provides bindings for the C++ and Python languages. We used
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Figure 4: Simulating disks based on the focused image.

Figure 5: Visualized inliers in the set of matched keypoints between the mirrored simulated
disks (see Fig. 4) and the ILIDS image.

these implementations to find and extract matching keypoints between our sam-
ple images, shown in Fig. 5.

The matches shown in Fig. 5 were found using a most basic method: brute-
force match search, followed by a ransac estimation of the homography matrix
K using a threshold of 10.

Since the two cameras were positioned behind a beam splitter in our setup,
the defocused image was flipped horizontally. We therefore first mirrored it
horizontally, using the transformation matrix

Mh =

 −1 0 (image width)
0 1 0
0 0 1

 .

To speed up the image registration process, it can be helpful to first down-scale
the images. To reduce an image to half of its original size, apply

S0.5 =

 0.5 0 0
0 0.5 0
0 0 1

 .

While the above operations might not be necessary in theory, we found that they
significantly improved the quality of the matches identified. If the registration

8



Figure 6: Focused camera image, after applying corrected homography Ĥ derived from the
matched keypoints, is superimposed onto defocused camera image of droplets.

algorithms mentioned above now find a homography matrix K, then we can
write

K Mh S0.5 Pfoc = S0.5Pdef (8)

and to bring this into a form similar to (6),

S−10.5 K Mh S0.5 Pfoc = S−10.5 S0.5Pdef (9)

= Pdef (10)

Finally, it turns out that Dantec’s DynamicStudio software violates conven-
tion by placing the coordinate origin at the bottom (not top) left corner of the
image. We must therefore pre- and post-multiply by M±1

v , with

Mv =

 1 0 0
0 −1 (image height)
0 0 1

 ,

to arrive at our final expression for Ĥ:

Ĥ = Mv S−10.5 K Mh S0.5 M−1
v . (11)

Substitution of Ĥ into (7) yields P̂def, which can be manually entered into
the DynamicStudio software. Fig. 6 illustrates how the use of Ĥ leads to an
improved alignment compared to Fig. 3. Note that a slight projective distortion
is necessary for optimal registration, confirming that it is infeasible to restrict
the homography to affine matrices.
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4. Point set registration between droplet centers from two images

The keypoint matching approach described above is not applicable when a
slit aperture was used to reduce overlap, as in the paper by Hardalupas et al.,
so we will outline briefly how to use registration algorithms with such setups.1

Keypoints are not required when the absence of disk overlap allows us to
identify focused and defocused objects centers directly from the respective im-
ages, as we can directly find a projection mapping between them. Indeed,
Hardalupas et al. successfully registered their PIV and ILIDS images in that
fashion: using wavelet transforms at various frequencies, they identified the pu-
tative droplet center positions on both focused and defocused images. Then,
using a continuous, single-stream monodisperse droplet generator, they esti-
mated how the magnitude of the center discrepancies varied over the image.
After applying this empirically estimated distortion to the captured focused im-
ages, they matched each focused droplet to the closest defocused droplet (if one
could be found within an subjectively chosen search distance).

Although they reported good success using this method, it requires both an
empirical estimation of the center discrepancies every time the camera is defo-
cused and a guess at the appropriate search window size. Moreover, mismatches
are likely as the naive closest-neighbour search is not robust to noise. To elim-
inate these steps, we suggest that droplet matches be found directly using a
robust point set registration algorithm.

Since the early 1990s, computer vision researchers have accumulated an im-
pressive body of work on this topic, most of it focusing either on rigid trans-
formations (i.e. translation and rotation only) or non-rigid transformations
(typically understood to include nonlinear warping). The problem at hand re-
quires an algorithm able to deal with projective transforms, which are non-rigid
but linear.

The only paper known to the authors to specifically address this case is by
Chi et al. [4], who propose an iterative search based on image moments. Since
image moments are an aggregate metric, they do not directly lead to a droplet-
to-droplet correspondence. Still, closest-neighbour matches after application of
this algorithm would likely produce results no worse than those found after
estimating the transformation empirically.

Robust non-rigid methods are also applicable in this case and deserve some
mention. Many of them are probabilistic relaxations of the Iterative Closest
Point algorithm, which simply searches for the least-squares-optimal rigid map-
ping. Several of these approaches were reviewed and generalized by Jian and
Vemuri [13]. A slightly different approach, named Coherent Point Drift [23], is
also highly popular and illustrated in Fig. 7.

We forgo at this point a documentation of the application and refer the
reader to Hardalupas et al., who describe their center identification technique

1While slit strip images could be simulated over the focused image (in a procedure analo-
gous to that illustrated in Fig. 4), the lack of overlap between them could make it significantly
more difficult to find “interesting” keypoints in the simulated image.
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Figure 7: Non-rigid variant of the Coherent Point Drift algorithm applied to two point sets.
Notice that the probabilistic nature of the matching creates robustness to unmatched points.
(Image source: Wikipedia)

in good detail, and to the above-mentioned authors, who have published freely
available implementations of their algorithms online.

5. Conclusion

Existing image registration algorithms, developed primarily for applications
in robotics and medical imaging, can eliminate the need for camera calibration
and sidestep the center discrepancy effect in simultaneous focused/defocused
droplet imaging configurations. We have shown how feature-based registration
algorithms can be used to estimate homographies between PIV and ILIDS disk
images, and we have suggested several point set registration methods that will
align images based purely on object center positions.

In the short term, increased awareness about the center discrepancy effect
and its origin should help assure ILIDS users that the “positioning error” is not
a symptom of poor experimental setup but an easily explained optical effect.
Ultimately, our hope is that by incorporating the reviewed algorithms in their
software, commercial vendors of ILIDS systems will eliminate the need for cali-
bration procedures altogether while improving the number of validated droplet
matches.
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